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Abstract A-ilability Codes
This paper gives a simple algorithm for solving a class ......... .

of graphical games where infinite play is possible. -, A l andlor

Introduction

A Deterministic Graphical (DG) game is a two person zero sum game

played on a directed graph with n > 0 nodes. Nodes are of two kinds:

terminal and continuing. Terminal nodes are those with no successors, and

have a payoff to player 1 associated with them. Continuing nodes have at

least one successor, and are labelled to indicate which player chooses the

successor. Play begins at some specified node, and continues until a

terminal node is reached. If no terminal node is ever reached, the payoff

is by convention 0. Otr-main intention jn this paper is to describe an

algorithm for solving DG games in o(nh steps. -.

The reader may not welcome our introduction of a new term for what may

seem like a familiar class of games. However, DG games are actually a

slightly new topic. The deterministic Perfect Information games of von

Neumann and Morgenstern (1944) and also Kuhn (1953) are restricted to be

trees, which makes them a special case. It is true that DG games for which

infinite play is impossible (tic-tac-toe is a good example) can always be

put in the form of a tree by replicating nodes, but that operation can

greatly increase the number of nodes. Besides, there are interesting DG

games for which infinite play is possible. Chess is one of these; the

FIDE rules (Harkness, 1956) permit a draw to be demanded in certain cases

where no conclusion is in sight, but never force a draw merely on account of

game length. The Perfect Information games of Berge (1957, 1962) are closer
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to DG games, but differ in that the payoff is influenced by all positions

(nodes) encountered in play, rather than only the terminal node. Several

authors have studied games similar to DG games where only two or three

payoffs are possible (Zermelo (1912), Holladay (1957), Smith (1966)). Smith

(1966) even comments that games with many possible payoffs are in principle

solvable by any method that can solve games with only two. Nonetheless, the

DG class has heretofore been nameless.

DG games are interesting because they seem to be the largest class of

"games of perfect information" that simultaneously permits parsimonious

representation and efficient computation. The possibility of infinite play

is explicit in DG games, even though the representation of a DG game is

itself finite. This permits the parsimonious representation of games

wherein a position can be repeated, without resort to devices such as move

counters or additional rules that simply prohibit repetition. Introducing a

large limit on the number of moves typically does not change the value of a

game, but does have the effect of greatly expanding the number of nodes in

its graphical representation. Pultr and Morris (1984) show that prohibiting

repetitions complicates the computational problem in an essential way. The

most natural thing to do in the presence of potentially infinite play seems

to be to simply permit it, which is consistent with representation as a DG

game. DG games are solvable in polynomial time in spite of the possibility

of infinite play, as will be shown below.

The fact that the payoff for infinite play in a DG game is assumed to

be 0 is not really restrictive, since the addition of any constant to all
S.

the payoffs of a game is strategically neutral. The assignment of 0 payoff

to infinite play is simply an analytical convenience.
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We now offer the following formal

Definition: A DG game is a directed graph with finitely many
nodes partitioned into three sets: S 1 (S 2 ) is the set of nodes
where player 1 (player 2) chooses the successor, and T is the set
of terminal nodes on which some real payoff function F is
defined. The successor function is r, with rx being empty if and
only if xcT.

Recursive Games and Solvability

DG games are special cases of Recursive Games. Everett (1957) has

therefore shown that all DG games have values, and, since the game element

corresponding to each node has a trivial minimax solution, that optimal

stationary strategies exist. Since the existence of stationary strategies

is guaranteed, we will omit the word "stationary" in what follows. A

strategy a, for player I is then simply a choice of a successor node in rx

for each xcS,, to be used at every opportunity if x arises more than once.

* Strategies for player 2 are defined similarly.

Definition: If H is some subset of the nodes of DG, we say that DG is

solvable over H if there is a pair of strategies (01,02) and a real function

W defined on the nodes of DG such that if the initial node is xEH,

a) all successors of x will remain in H and the payoff will be
at least Wx as long as player 1 employs 01, and

b) all successors of x will remain in H and the payoff will be
at most Wx as long as player 2 employs a.

DG will be said to be solvable if it is solvable over all nodes.

We wish to show that DG is solvable. Our method will be to show that

DG is solvable over T, and that the set of nodes for which DG is solvable
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can always be expanded if it is incomplete. We will frequently take

advantage of the fact that, if properties a) and b) above hold for an

"initial" node xeH, they will also hold if node x is chosen any time before

the game terminates; this follows from the stationarity of the strategies

being considered.

Preparatory Lemmas

Lemma I

Suppose that DG is solvable over H, that Tc H, and that there is some

node ycH for which ryc H. Then the game is solvable over H Uty.

Proof

Let a,, a,, and W solve DG over H, and suppose yES,. We will modify

the strategies and extend W to include y, so that DG is solved over H (y).

The extension is

Wy - max Wz (1)

zery

If z is any maximizing node in (1), let oll be identical to a, except that

player I maps y into z. Since a,' agrees with o on H, a,' guarantees that

all successors of nodes in H will remain in H, and therefore the same thing

is true of nodes in H ufy}. Furthermore, a,' guarantees at least Wx for

xEHlj{y}; any exception would contradict the fact that 01 guarantees Wx for

xEH. This establishes property a) for o' and H u {y}. To establish
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property b) for a2 and H u{y}, we have only to note that rycH, which

guarantees that successors of y remain in H U[y} (in H, in fact) regardless

of the strategy employed by player 1, and also note that Wy is defined to be

a maximum, which means that no payoff larger than Wy is possible from node y

as long as player 2 employs a2. This completes the proof of lemma 1 for the

case where yeS,. Since Tc H, the only other possibility is that ycS 2 , in

which case take

Wy - min Wz (2)

zcry

and define 02' to be 02 except that player 2 maps y into z. The rest of the

proof is similar.

Lemma 1 assumed the existence of a node yeH for which ryc H. In the

next lemma, we assume that such a node does not exist.

Lemma 2

Suppose that DG is solvable over H, that T c H, and that H fn ry is not

empty for any ycH. Then there exists some yEH for which the game is

solvable over H uty}.

Proof: Let o,, 02, W solve the game over H. Since by assumption each

player has the option of mapping nodes in H into H, there are strategies Z'

for player 1 and E2 for player 2 with the properties that Z, (E2 ) agrees

with a, (02) on H and that E, (E2) maps nodes in H into H Furthermore,•-

nodes in H are not successors of nodes in H under either o, or a2, and

therefore E,, E2, W solves the game over H. Let *t

5
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Q - {(x,i) I xHnS, i-lHnrxi; j - 1,2 (3)

and let w, - max Wi, and w, - min Wi. (4)

(x,i)cQ1  (x,i)EQ2

If Q, (Q.) is empty, let w, be any negative number (w. be any positive

number). Intuitively, w, is the best payoff in H obtainable by player 1

from anywhere in H, and similarly for w2 and player 2. We will prove the

lemma in three cases.

Case 1 (w1>O)

Let (y,z) be any maximizing pair in the definition of w,, let Wy w,,

and let a,' be o except that o' maps y into z. The proof that property a)

holds for a,' and H uty} is as in lemma 1. On the other hand player 2 can

guarantee a payoff of at most Wy from y by employing E,, since under that

strategy the payoff will not exceed w, if some successor node (necessarily a

*, choice of player 1) is in H, or (since H contains no terminal nodes) 0 if

all successor nodes are in H. Since E2 agrees with a, on H, property b)

holds for E, and H uyl. Therefore a,', E,, W solves G over Ho(y}.

Case 2 (w2SO)

Let (y,z) be any minimizing pair in the definition of w2, let Wy =W2

and let 02' be 02 except that 02' maps y into z. Then E., O', W solves G

over H {yl. The proof is similar to that of case 1.

il6
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Case 3 (w1<O and w2>O)

In this case we can take Wy - 0 for all y in H. El, E2 , W solves DG

over all nodes. Note that El guarantees at least 0 from any node yEH

because

a) If player 2 employs any strategy for which some successor of y

is in H, a, and therefore E guarantees a non-negative payoff.

b) If player 2 employs any strategy for which no successor of y is
in H, Z, guarantees a payoff of 0.

Similarly, E2 guarantees a payoff of at most 0 from any node in H, and this

completes the proof of Case 3 and Lemma 2.

DG Theorem

All DG games are solvable.

Proof: Let H o - T, and Wx - Fx for xcT. Any DG game is evidently solvable

over H,. If H o does not include all nodes, either lemma 1 or lemma 2

applies, and hence the game is solvable over some set H, that strictly

includes H,. In a similar manner we can generate H2 , H3 , etc. Since there

are only finitely many nodes, we must eventually encounter some Hn that

includes all nodes, which means that the game is solvable.

-1

An Example

Figure I shows the solution of a DG game with 18 nodes. Squares

represent moves for the maximizer, and circles for the minimizer. All arcs

are oriented toward the right except for the two that are curved, which are

oriented to the left. The terminal nodtg are marked with numbers that
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indicate the payoff. The five non-terminal nodes from which the value is

non-zero have letter labels to indicate the order of computation. Lemma 1

applies to nodes a,b,c, and e, and case I of lemma 2 applies to node d.

Case 3 of lemma 2 applies to the other four nodes, which are the last nodes

to enter H and the ones from which optimal play is non-terminating.

Computational Considerations

A bound on the computational effort required for a DG game with n nodes

can be obtained by first observing that the essential operation in applying

either lemma 1 or 2 is that of comparing two values, one of which has a node

index. Let h be the number of nodes in the solved set H. A straightforward

implementation of the DG Theorem would involve a loop in which h is

incremented by one in every cycle until either case 3 of lemma 2 arises or

else h-n, whichever comes first. In the worst case, one would have to do a

comparison for every pair (x,y) where xeH and yeH, a total of h(n-h)

comparisons when the loop index is h. Summing on h, we obtain a bound of

n nI h(n~h) comparisons, which is approximately f h(n-h)dh=n3 /6. The amount

h-0 h =0

of effort involved is therefore no worse than cubic in the number of nodes.

The n1/6 bound would presumably not be sharp for a careful implementation of

the DG Theorem, since making h(n-h) comparisons may very well permit the

addition of multiple nodes to H (all nodes x in H for which Fx H can be

added to H, for example), and other efficiencies are also possible.

Random Moves

There is no conceptual difficulty in introducing random moves into

graphical games. If finite, such games are still Recursive Games and
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therefore have solutions with stationary strategies. However, the inclusion

of random moves seems to complicate the solution procedure in an essential

manner; there is apparently no feature to exploit that is not already

present in Recursive Games. This is the reason for excluding the

possibility of random moves in DG games. There are thus two classes of

graphical games for which a simple solution technique is available, DG games

being one and finite tree games (possibly with random moves) being the

other. Backgammon is an example of a game that lies in neither class.

In Practice

We have argued that DG games permit a parsimonious representation of

games such as Chess. It is clear that even a parsimonious representation

and a polynomial time algorithm will not help much in solving games as

complicated as the archtype, however. Without taking advantage of symmetry,

even the representation of tic-tac-toe as a DG game would be a formidable

task. The French Military Game (Gardner (1963), Lucas (1895)) comes to mind

as an example of a non-trival parlor game solvable as a practical matter if

a determined practioner were to make repeated application of lemmas I and 2.

The main difficulty with parlor games is the work involved in translating

the rules into graphical notation, rather than the ensuing computations.

For large DG games expressed directly as graphs, the existence of a

polynomial time solution algorithm would be more significant.
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